OpenScop

A Specification and a Library for Data Exchange in Polyhedral Compilation Tools

Edition 1.0, for OpenScop Specification 1.1 and OpenScop Library 0.9.0
June 3rd 2014

Cédric Bastoul

This document describes OpenScop, a specification of a file format and a set of data structures
for polyhedral compilation tools to talk together. It also describes briefly the OpenScop Library
version 0.9.0, a Free Software that provides an example of OpenScop implementation.

It would be quite kind to refer at the present document in any publication that results from the
use of the OpenScop Library:

Q@TechReport{Basll,
author = {C\’edric Bastoull},
title = {OpenScop: A Specification and a Library for Data
Exchange in Polyhedral Compilation Tools},
month = {September},
year = 2011,
institution = {Paris-Sud University, France}
}

Copyright (©) 2011 Paris-Sud University and INRIA.

Permission is granted to copy, distribute and/or modify this document under the terms of the
GNU Free Documentation License, Version 1.2 published by the Free Software Foundation; with
no Invariant Sections, with no Front-Cover Texts, and with no Back-Cover Texts. To receive a
copy of the GNU Free Documentation License, write to the Free Software Foundation, Inc., 59
Temple Place, Suite 330, Boston, MA 02111-1307 USA.

Table of Contents

1 Introduction.......... 1
2 Polyhedral Representation of Programs...................... 3
2.1 Motivation: Program Transformations........... i 3
2.2 Thinking in Polyhedra 4
2.2.1 Tteration Domain.ot)
2.2.2 Scattering Functiono i 7
2.2.3 Access FUNCHION.ttt 12
2.3 What’s Next T . ..o 13
3 OpenScop Specification........................ . 15
3.1 Preliminary Example e 15
3.2 OpenScop File Format Specification.......... i 18
3.2.1 Relations . ..o 19
3.2.1.1 TIteration Domain Relation........... i, 20
3.2.1.2 Context Domain Relation i, 22
3.2.1.3 Scattering Relation........... ..o 22
3.2.1.4 Access Relation ... 22

3.2.2 GEIITICS . o ottt 23
3.2.2.1 Strings GENETICttt e 23
3.2.2.2 Body GeNeriCottt 23

3.3 OpenScop Data Structure Specification.............. 24
3.3.1 0Slimt b oo 24
3.3.2 oslrelation_t 25
3.3.3 oslrelation_list_t 25
3.3.4 oslinterface_t. 26
3.3.5 08lgeneriC t . ..ot 26
3.3.6 0slStTingS b ... 26
3.3.7 08l body b 27
3.3.8 oslostatement_t 27
3.3.9 08l 800Dt 27
3.4 EXbeNSIONS . . o oot 30
3.4.1 Comment EXtension e 31
3.4.2 Scatnames EXtension.o i e 31
3.4.3 Arrays EXEensionot 32
3.4.4 Coordinates Extension 33
3.4.5 Clay EXtensiono.uuu e 33
3.4.6 Extbody Extension i 34
3.4.7 Loop EXtension e 35
3.4.8 Pluto unroll EXtensiono 36
3.4.9 Trregular EXtension e 37
2R T & 151 70 38
4 OpenScop Library 39
41 PreCISION . e e 39
4.2 Base FUNCtions i 39

4.2.1 Dumping: osl_structure_dump and idumpo, 40

ii

OpenScop Specification and Library

4.2.2 Printing: osl_structure_print 40
4.2.3 Reading: osl_structure_read 40
4.2.4 Allocating: osl_structure_malloc.......... .. i 40
4.2.5 Deallocating: osl_structure_free i 40
4.2.6 Cloning: osl_structure_clone........... ..., 41
4.2.7 Testing: osl_structure_equal 41
4.3 Example of OpenScop Library Utilization i ... 41
4.4 Tnstallation e 41
O I) T PP 42
4.4.2 RequIr€mentsoouoiiiin it 42
4.4.2.1 GMP Library (optional)......o 42

4.4.3 Installation Instructions.............cc i 43
4.4.4 Optional Features.t e e 43
4.4.5 Uninstallation 43
4.5 Documentation e 43
4.6 DeveloPImMEnt 44
4.6.1 Copyright ISSue 44
4.6.2 REPOSIEOTY . ..t 44
4.6.3 Coding Style. ...t 44
4.6.4 Extension Development i 44

5 References 47

1 Introduction

OpenScop is an open specification that defines a file format and a set of data structures to
represent a static control part (SCoP for short), i.e., a program part that can be represented
in the polyhedral model. The goal of OpenScop is to provide a common interface to various
polyhedral compilation tools in order to simplify their interaction.

Designing a single format for tools that have different purposes (e.g., as different as code
generation and data dependence analysis) may sound strange at first. However we could observe
that most available polyhedral compilation tools during the last decade were manipulating more
or less the same kind of data (polyhedra, affine functions...) and were actually sharing a part
of their input (e.g., iteration domains and context concepts are nearly everywhere). We could
also observe that those tools may rely on different internal representations, mostly based on
one of the major polyhedral libraries (e.g., Polylib, PPL or isl), and this representation may
change over time (e.g., when switching to a more convenient polyhedral library). The OpenScop
aim is to provide a stable, unified format that offers a durable guarantee that a tool can use
an output or provide an input to another tool without breaking a tool chain because of some
internal changes in one element of the chain. The other promise of OpenScop is the ability to
assemble or replace the basic blocks of a polyhedral compilation framework at no, or at least
low engineering cost.

The policy that drives OpenScop can be summarized by these three rules:

e Embed the minimum information to build a complete polyhedral compilation framework in
the so-called core part (to avoid as much as possible empty or useless information for each
tool).

e Provide a very stable core part (so users have some guarantee that they will not need to
update their tool because of frequent specification evolution),

e Provide a very flexible extension part (so it can also be used to test wild new ideas).

Another, more technical, rule may be added:

e Avoid any need for external library or tool to support it (i.e., it’s not XML or YAML or
anything like that).

The success of OpenScop in meeting its goals totally depends on its acceptance by the tool
developers (that have to support it in their tools). To help them, we provide an example
implementation: the OpenScop Library. This library (and in particular its API) is not part of
the OpenScop specification (which includes only the file format and the set of data structures).
It is licensed under the 3-clause BSD license so developers may feel free to use it in their
code (either by linking it or copy-pasting its code). This document also describes this library
briefly (readers are invited to read at its technical documentation). The current version of
the OpenScop Library is still under evaluation, and there is no guarantee that the upward
compatibility will be respected, even if we do think so. A lot of reports are necessary to freeze
the library API. Thus you are very welcome and encouraged to send reports on bugs, wishes,
critics, comments, suggestions or (please!) successful experiences to the OpenScop mailing list
openscop-development@googlegroups.com.

This document is organized as follows. First, we provide some background on the polyhedral
model and how it is used to represent and to manipulate programs (see Chapter 2 [Polyhedral
Representation], page 3). Next, we describe the OpenScop specification, from the file format
(see Section 3.2 [OpenScop File Format Specification], page 18) to the data structures and
the OpenScop Library API (see Section 3.3 [OpenScop Data Structure Specification], page 24).
Finally we will detail how to install the OpenScop Library (see Section 4.4 [Installation], page 41).

mailto:openscop-development@googlegroups.com

2 Polyhedral Representation of Programs

If you are reading at the OpenScop documentation, you probably don’t need any explanation
about the polyhedral model. It is unlikely that someone will read this paper by mistake. However
some vicious advisor may ask their poor engineers/interns/students to work for the very first
time on this exciting topic. Most papers on polyhedral compilation are hard to read. Despite
my efforts, mine are no exception according to some reviewers. Hence I give there a new try to
provide a comprehensive explanation of the polyhedral model without the size and style limits
of a classical research paper.

Be aware that to be able to understand the polyhedral model, there are a few prerequisites.
You should not read the following while you still ignore what is:

e a for loop construction in C programs (do loops in FORTRAN are OK too!),
e an affine expression,

e a vector,

e a matriz,

e a matriz-vector multiply.

If you do not know those concepts, please do some search and come back afterwards. And if
you are courageous enough, send me a few lines that describe them so I can insert them here!

2.1 Motivation: Program Transformations

A direct translation of high level programs written, e.g., in C, to assembly then to object code
is likely to produce (very) inefficient applications. Architectures are quite complex, including
several levels of cache memory, many cores, deep pipelines, various number of functional units,
of registers etc. The list of such "architectural features" is growing with each new generation
of processors. To achieve the best performance, the object program must use these features in
a smart way. Programmers use high level languages for productivity and portability: typically
they do not have to take care of the target architecture but to ensure they write programs which
produce the right output. Hence, the problem of mapping the program to the target architecture
in the most efficient way is left to the compiler.

The compiler may see a high level program as a specification of an output. The program is
a list of instructions to be executed to produce the output. As long as the output is guaranteed
to be as the programmer specified in his code, the compiler is free to modify the program. For
instance, let us imagine we are working on an architecture with only three registers and we
consider the following statements written by a programmer:

X = a + b;
y =c + d;
z =a *x b;

It is easy to see that we can reorder the three statements in any way without modifying the
semantics (no statement reads or writes a variable that another statement writes). Because of
the lack of registers, the solutions such that the first and the third statements are one after the
other are better because a and b will be put in the processor registers by one statement and can
be reused directly by the other one without reading from memory (this is called a data locality
improving transformation). Hence a better statement order is, e.g.:

X = a + b;
a * b; // a and b are still in processor registers
y =c¢ + d;

z

We can also notice that it is possible to run the three statements in parallel (possibly on
different processors). The programmer may explicit this in a way the compiler and/or the

4 OpenScop Specification and Library

architecture is able to understand. For instance, we can use OpenMP to describe parallelism
(this is called a parallelizing transformation):

#pragma omp parallel sections

{
#pragma omp section
{
X = a + b;
X
#pragma omp section
{
y =c+ d;
X
#pragma omp section
{
Z = a *x b;
b
3

However, the right way to optimize this program is probably a tradeoff between these two
techniques. This is true if, e.g., the target architecture has some limitations to run too many
operations in parallel, or, like in our case, when some data may be reused by some processors.
Hence, the best optimization for our small example is probably the following:

#pragma omp parallel sections

{
#pragma omp section
{
X = a + b;
Z = a *x b;
b
#pragma omp section
{
y =c+d;
b
3

This example is quite trivial because the statements are executed only once. The real sport
begins when we have to deal with loops, as we will see momentarily. However, polyhedral
compilation framework users have to be conscious that we need to transform programs to achieve
the best performance and that the best transformation that has to be discovered (at the price
of many, many efforts) and performed may be quite complex. Hence the need of powerful model
and tools.

2.2 Thinking in Polyhedra

Since the very first compilers, the internal representation of programs is the Abstract Syntax
Tree, or AST. In such representation, each statement appears only once even if it is executed
many times (e.g., when it is enclosed inside a loop). This is a limitation for finding and applying
complex transformations:

e It limits program analysis power. For instance if a statement depends on another statement
(i.e., they access the same memory location and at least one of these accesses is a write), we
will consider both statements as unique entities while the dependence relation may involve
only few statement executions.

Chapter 2: Polyhedral Representation of Programs 5

e It limits program transformation power. Loop transformations operate on statement ex-
ecutions. For instance, because they consider all statement executions at the same time,
present day production compilers are not able to achieve loop fusion (that tries to merge
the loop bodies of two loops) if the loop bounds of the two loops do not match (yes, that’s
ridiculous).

e [t limits program manipulation flexibility. Trees are very rigid data structures that are not
easy to manipulate. Program transformation may require very complex transformations
that will imply deep modifications of the control flow.

The Polyhedral Model is a convenient alternative representation which combines analysis
power, expressiveness and high flexibility. The drawback is it breaks the classical structure of
programs that every programmer is familiar with. It requires some (real) efforts to be smoothly
manipulated, but it definitely worth it. It is based on three main concepts, iteration domain,
scattering function and access function that are described in depth in the following sections.

A program part that can be represented using the Polyhedral Model is called a Static Control
Part or SCoP for short.

2.2.1 Iteration Domain

The key aspect of the polyhedral model is to consider statement instances. A statement instance
is one execution of a statement. A statement outside a loop has only one instance while those
inside loops may have many. Let us consider the following code with two statements S1 and S2:

pi = 3.14; // 81
for (i = 0; i < 5; i++)
Ali] = pi; // 82
The list of statement instances is the following (we just have to fully unroll the loop):

pi = 3.14;
A[0] = pi;
Al1] = pi;
A[2] = pi;
A[3] = pi;
Al4] = pi;

Each instance of a statement which is enclosed inside a loop may be referred thanks to its
outer loop counters (or iterators). In the polyhedral model we consider statements as functions
of the outer loop counters that may produce statement instances: instead of simply "S2", we
use preferably the notation S2(i). For instance we denote the statement instance A[3] = pi; of
the previous example as $2(3). This means instance of statement S2 for i = 3. If a statement
83 is enclosed inside two loops of iterators i (outermost loop) and j (innermost loop), we would
denote it 83(i, j), and so on with more enclosing loops.

The ordered list of iterators (ordered from the outermost iterator to the innermost iterator)
is called the iteration vector. For instance the iteration vector for 83 is (i,j), for S2 it is (1),
and for S1 it is empty since it has no enclosing loop: (). A more precise reading at the notation
S2(3) would show that it denotes the instance of statement S2 for the iteration vector (2).

Obviously, dealing with statement instances does not mean we have to unroll all loops. First
because there would be probably too many instances to deal with, and second because we
probably just do not know how many instances there are. For instance in the following loop it
is impossible to know (at compile time) how many times the statement S3 will be executed:

for (i = 2; i <= N; i++)
for (j = 2; j <= N; j++)
A[i] = pi; // 83

6 OpenScop Specification and Library

Such a loop is said to be parametric: it depends on (at least) a value called a parameter which
is not modified during the execution of the whole loop, but is unknown at compile time. Here,
the only parameter is N.

A compact way to represent all the instances of a given statement is to consider the set
of all possible values of its iteration vector. This set is called the iteration domain. It can
be conveniently described thanks to all the constraints on the various iterators the statement
depends on. For instance, let us consider the statement S3 of the previous program. The
iteration domain is the set of iteration vectors (i, j). Because of the parameter, we are not able
to achieve a precise list of all possible values. It would look like this:

(2,2) (2,3) (2,4 ... (@,M
3,2) (3,3) (3,4) ... (3,N)
N,2) (,3 ,4) ... (N,N)

A better way is to say it is the set of iteration vectors (i,j) such that i is an integer greater or
equal than 2 and lower or equal than N, and j is an integer greater or equal than 2 and lower or
equal than N. This may be written in the following mathematical form:

Ds3={(i,j) € Z°|2<i< NA2<j <N}

It is easy to see that this iteration domain is a part of the 2-dimensional space Z2. We often
use in our research papers a graphical representation that gives a better view of this subspace:

j i>=2 i<=N
N PRSP, j<=N
¢« o o o o
e o o o o
e o o o o
2 | P>=2
11
12 N i

Here, the iteration domain is specified thanks to a set of constraints. When those constraints are
affine and depend only on the outer loop counters and some parameters, the set of constraints
defines a polyhedron (more precisely this is a Z-polyhedron, but we use polyhedron for short).
Hence the polyhedral model!

To manipulate a set of affine constraints easily, we rely on a matrix representation. To write
it, we use the homogeneous iteration vector: it is simply the iteration vector with some additional
dimensions to represent the parameters and the constant. For instance for the statement S3,
the iteration vector in homogeneous coordinates is (i, j, N, 1) (we will now call it iteration
vector directly for short). Then we write all the constraints as affine inequalities of the form
affine constraint > 0. For instance for the statement S3 the set of constraints is:

i—2 >0
—i+N >0
i—2 >0
—-J+N =0

Lastly, we translate the constraint system to the form domain matrix * iteration vector >= 0:

1 0 0 —27 /i 0
-1 0 1 0 i |0
o 1 o —2/[~N]|=]o0
0 -1 1 0 1 0

Chapter 2: Polyhedral Representation of Programs 7

The domain matrix will be used in all our tools to provide the information on the iteration
domain of a given statement (the iteration vector is in general an implicit information).

2.2.2 Scattering Function

There is no ordering information inside the iteration domain: it only describes the set of state-
ment instances but not the order in which they have to be executed relatively to each other.
In the past the lexicographic order of the iteration domain was considered, this is no more true
(especially when using CLooG). If we do not provide any ordering information, this means that
the statement instances may be executed in any order (this is useful, e.g., to specify parallelism).
However, some statement instances may depend on some others and it may be critical to enforce
a given order (or non-order). Hence we need another information.

We call scattering any kind of ordering information in the polyhedral model. There exists
many kind of ordering, such as allocation, scheduling, chunking etc. They are all expressed in
the same way, i.e., using logical stamps, but they may have different semantics.

In the case of scheduling, the logical stamps are logical dates that express at which date
a statement instance has to be executed. For instance, let us consider the following three
statements:

X = a + b; // 81
y =c + d; // S2
z=ax*xb; //S3

The scheduling of a statement S is typically denoted by 0g. Let us consider the following logical
dates for each statement:

051 == 2
05‘2 = 3
95’3 - 1

It means that statement S3 has to be executed at logical date 1, statement S1 has to be executed
at logical date 2 and statement S2 has to be executed at logical date 3. The target code has
to respect this scheduling (the order of the logical dates), hence it would look like the following
where the variable t denotes the time:

t =1;
Z = a * b; // 83
t = 2;
x=a+b; //S1
t = 3;
y=c+d; //S2

When some statements share the same logical date, this means that, once the program reaches
this logical date, the two statements can be executed in any order, or better, in parallel. For
instance let us consider the following scheduling;:

95’1 —].
Oso = 2
sz = 1

Statements S1 and S3 have the same logical date, moreover, S2 has a greater logical date than
S1 and S3. Hence the target code would be:

8 OpenScop Specification and Library

t =1;
#pragma omp parallel sections
{
#pragma omp section
{
X =a + b; // S1
b
#pragma omp section
{
z=ax*xb; //8S3
}
b
t = 2;
y =c + d; // 82

Logical dates may be multidimensional, as clocks: the first dimension may correspond to
days (most significant), the next one to hours (less significant), the third to minutes and so on.
For instance we can consider the following multidimensional schedules for our example:

95’1 = (1,1)
0sa = (2,1)
Oss = (1,2)

It is not very hard to decypher the meaning of such scheduling. Because of the first dimension,
statements S1 and S3 will be executed before statement S2 (S1 and S3 are executed at day 1,
while 82 is executed at day 2). The second dimension is not really useful there for S2 because
it is the only statement executed at day 2. Nevertheless it allows to order S1 and S3 relatively
to each other since S1 is executed at hour 1 of day 1 while S3 is executed at hour 2 of day 1.
The corresponding target code is the following, with some additional time variables for a better
view of the ordering (t1 corresponds to the first time dimension, t2 to the second one):

tl = 1;
t2 = 1;
x=a+b; //S1
t2 = 2;
Z = a * b; // 83
tl = 2;
t2 = 1;

y=c+4d; //S2

In the case of allocation (in the literature we can find some papers calling it placement), the
logical stamp is a processor number expressing on which processor a statement instance has to
be executed. Typically, allocations are written in the same way as scheduling. Here, we denote
it Ps for a statement S. For instance, let us consider the following allocation:

PSI - 1
PSQ — 2
Ps3 —].

The corresponding target code has to take into account that both statements S1 and S3 have to
be executed on the same processor (they have the same logical number 1) and that statement
S2 has to be executed on another processor (logical number 2). A possible target code is the
following;:

Chapter 2: Polyhedral Representation of Programs 9

#pragma omp parallel sections

{
#pragma omp section
{
// Logical processor 1
X =a + b; // S1
Z = a * b; // S3
}
#pragma omp section
{
// Logical processor 2
y=c+d; // S2
}
}

We can note that no order has been specified for the statements S1 and S3 that are executed
on the same processor. Hence any order is satisfying. For sake of flexibility, it is usual to build
a scattering whose various dimensions do not have the same semantics. A typical construction
is space/time mapping where the first n dimensions are devoted to allocation, then the last m
dimensions are devoted to scheduling. Typically, space/time mapping is written in the same
way as scheduling. Here we denote it Mg for a statement S. For instance, let us consider the
following space/time mapping for our example where one dimension is devoted to mapping and
one dimension is devoted to scheduling:

Mg, = (1’2)
Ms, = (2,1)
Msg = (1,1)

Here we have the same first dimension as the previous example, thus the allocation of the
statements to processors is the same. The second dimension precises on a given processor at
which logical date a statement instance has to be executed. Here, the statement S1 is executed
at day 2 on processor 1 while the statement S3 is executed at day 1 onto the same processor. It
follows this space/time mapping corresponds to the following target code (we added an additional
variable to represent the local logical clocks):

#pragma omp parallel sections

{
#pragma omp section
{
// Logical processor 1
t =1;
Z =a *x b; // S3
t = 2;
X =a+ b; // 81
}
#pragma omp section
{
// Logical processor 2
t =1;
y = c + d; // S2
}
}

For the same reason as discussed for iteration domains (see Section 2.2.1 [Iteration Domain],
page 5), it is not possible to define a scattering for each statement instance, especially if the

10 OpenScop Specification and Library

statement belongs to a (possibly parametric) loop. The iteration vector fully defines an instance
of a given statement. Thus, a practical way to provide a scattering for each instance of a given
statement is to use a function that depends on the iteration vector. In this way the function
may associate to each iteration vector a different scattering. We call these functions scattering
functions. Scattering functions are affine functions of the outer loop counter and the global
parameters. For instance, let us consider the following source code:
for (i = 2; 1 <= 4; i++)
for (j = 2; j <= 4; j++)
P[i+j] += A[i]l + B[jl; // sS4

The iteration domain of the statement S4 is:

Dsi={(i.j) € Z*|2<i<4n2< <4},

If you are still not comfortable with the mathematical notation, it corresponds to the following
graphical representation:

i>=2 i<=4
. j<=4
* * {]
2 . =2
1,
12 4 i

The list of the statement instances of S4 (the integer points of its iteration domain) corresponds
to the following iteration vectors:

iteration vector
(2,2)
(2,3
(2,4)
(3,2)
(3,3)
(3,4)
(4,2)
(4,3)
(4,4

Let us suppose we want to schedule the instances of the statement S4 (the integer points of its
iteration domain) using the following scheduling function:

We only need to apply the function to each iteration vector to find the logical date of each
instance:

iteration vector logical date
(2,2) -=> (4,8)
(2,3 -=> (5,9
(2,4 -=> (6,10)
(3,2) -=> (4,11)
(3,3 -=> (5,12)
(3,4) -=> (6,13)
(4,2) -—> (4,14)
(4,3 -=> (56,15)

(4,4 -=> (6,16)

Chapter 2: Polyhedral Representation of Programs 11

The polyhedral model users do not have to take care about the generation of a target code
that respects the scattering: the CLooG! tool is there to solve the problem quite easily. For
the previous example, the target code would be the following (t1 and t2 correspond to the two
dimensions of the logical date, the reader may take care that this code actually implements the
scattering function):

for (t1 = 4; tl <= 6; ti1++) {
for (2 = t1+44; t2 <= t1+10; t2++) {
if ((-t1+t2+2)%3 == 0) {
i = (-t1+t2+2)/3 ;
jo=t1-2 ;
P[i+j] += A[i] + B[j]; // s4
}
}
}

Obviously with such a twisted scheduling, it is hard to see the "meaning" of the transforma-
tion. To name any kind of program transformation as a magic spell ("tile", "fuse", "skew"...)
is an old bad habit which is not relevant anymore in the polyhedral model: a scheduling may
be an arbitrary complex sequence of basic-old-good transformations. Nevertheless it is most of
the time quite easy to translate well known transformations to schedules. For instance, let us
consider this new scheduling function:

954(i7j) = (]72)
Using CLooG, we can generate the target code:
for (t1 = 2; t1 <= 4; ti1++) {
for (t2 = 2; t2 <= 4; t2++) {
i=1t2;
j = ti;
P[i+j] += A[il + B[jl; // sS4
}
}

It is easy to see (and analyze) that it corresponds to a classical loop interchange transformation.

A very useful example of multi-dimensional scattering functions is the scheduling of the
original program. The method to compute it is quite simple (see [Fea92], page 47). The idea is
to build an abstract syntax tree of the program and to read the scheduling for each statement.
For instance, let us consider the following implementation of a Cholesky factorization:

/* A Cholesky factorization kernel. */
for (i=1;i<=N;i++) {
for (j=1;j<=i-1;j++) {
ali]l[i] -= alil[j] ; // 81
X
alil [i] = sqrt(alil[il) ; // 82
for (j=i+1;j<=N;j++) {
for (k=1;k<=i-1;k++) {
aljl[i] -= aljl[kl*alil (k] ; // S3
b
aljl[i] /= alil[i] ; // s4
b
b
3

! http://www.cloog.org

http://www.cloog.org

12 OpenScop Specification and Library

The corresponding abstract syntax tree is shown in the following figure. It directly gives the
scattering functions (schedules) for all the statements of the program (just follow the paths).

951(7:7.j) (071 0 j7)
Os2(7) =(0,4,1)

953(iaja k;) (03172 .]70 k 0)
9S4(iaj) (07172 jv)

These schedules depend on the iterators and give for each instance of each statement a unique
execution date. Using such scattering functions allows CLooG to re-generate the input code.

To easily manipulate the scattering function of any statement S, we translate it to the matrix
form: Og(iteration vector) = scattering matrix * iteration vector. For instance let us consider
again our previous example 0s4(i,7) = (j + 2,3 % i + j). We write it in the following way:

] ?

0 j_[012]j
S4 -
| 3 1 0]\3

The scattering matrix will be used in all our tools to provide the information on the scattering
of a given statement (the iteration vector is in general an implicit information).

2.2.3 Access Function

Before applying any transformation, it is essential to deeply analyze both the original program
and the transformation to ensure the transformation does not imply any modification of the
original program semantics. In the polyhedral model, we are able to achieve an exact analysis
when all the memory accesses are made through arrays (note that variables are a particular case
of arrays since they are simply arrays with only one memory location) with affine subscripts
that depend on outer loop counters and global parameters (note that subscripts are sometimes
called index or accesses in the literature).

For instance let us consider the array access A[2xi+j] [j] [1+N]. It has three dimensions, each
subscript dimension is an affine form of some outer loop iterarors (i and j) and global parameters
(N) hence it corresponds to an acceptable array access to be analyzed in the polyhedral model.

Each array access can target a different memory cell depending on the statement instance,
i.e., depending on the iteration vector. Thus we use access functions (or subscript functions, or
index functions, as you prefer to call it) depending on the iteration vector to describe an array
access. In our example, the access function would be written F4(i,7) = (2%i+ j,4,i + N).

To easily manipulate the access function of any array A, we translate it to the matrix form:
Fs(iteration vector) = access matrix * iteration vector. For instance let us consider again our

Chapter 2: Polyhedral Representation of Programs 13

previous example. We would write it in the following way:

;, 2100;.
Fy —l0o 1 0 0

N N

) 1o o1oof\y

The access matrix will be used in all our tools to provide the information on the access of a
given statement (the iteration vector is in general an implicit information).

2.3 What’s Next?

OK, now you have an idea about how we do represent a program part in the polyhedral model.
You know the three main concepts, namely: domain, scattering and access. What can you do
with this?! Well, pretty much anything related to code restructuring! The core idea will be to
rely on the mathematical representation to extract useful information about your code (data
reuse, parallelism...) and to generate a scattering to benefit from the properties you analysed.
However, OpenScop’s documentation is not the right place to learn at this (OpenScop is all
about representation, not about manipulation). Probably it is the right time for you to have a
look at:

e PoCC http://pocc.sourceforge.net
e Pluto http://pluto-compiler.sourceforge.net

Have fun :-) !

http://pocc.sourceforge.net
http://pluto-compiler.sourceforge.net

15

3 OpenScop Specification

OpenScop provides an explicit polyhedral representation of a static control part. It has been
designed by various polyhedral compilation tool writers from various institutions. It builds on
previous popular polyhedral file and data structure formats (such as .cloog and CLooG data
structures) to provide a unique, extensible format to most polyhedral compilation tools. It is
composed of two parts. The first part, the so-called core part, is devoted to the polyhedral
representation of a SCoP. It contains what is strictly necessary to build a complete source-to-
source framework in the polyhedral model and to output a semantically equivalent code for the
SCoP, from analysis to code generation. The second part of the format, the so-called extension
part, contains extensions to provide additional informations to some tools.

3.1 Preliminary Example

OpenScop is a specification for representing static control program parts in the polyhedral
model. Thus, we can translate some code parts to an equivalent OpenScop representation. As
an example, let us consider the following matrix-multiply kernel:
#pragma scop
if (N> 0) {
for (1 = 0; i < N; i++) {
for (j = 0; j < N; j++) {
Clil [j1 = 0.0;
for (k = 0; k < N; k++)
Clil[j] = Clil[j] + A[il (k] * B[x][j];
}
}
}

The Clan® tool may be used to translate this code part to an OpenScop representation
automatically. The #pragma scop is used here for Clan, but some other tool may not need it.
Here is the result of the translation to an OpenScop textual representation.

DON’T PANIC

Explanations will follow and it is not as cryptic as it seems to be !

<0OpenScop>

Global
Backend Language
C

Context
CONTEXT
130001
#e/i | N |1
1 1 -1 ## N-1 >= 0

Parameter names are provided
1
Parameter names

! http://wuw.lri.fr/ bastoul/development/clan/

http://www.lri.fr/~bastoul/development/clan/

OpenScop Specification and Library

<strings>
N
</strings>

Number of statements

2
Statement 1
Number of relations describing the statement
3
- 1.1 Domain
DOMAIN
452001
#e/i | 1 j N |1
1 1 0 0 0 ## i >= 0
1 -1 0 1 -1 ## —-i+N-1 >= 0
1 0 1 0 0 # j>=0
1 o -1 1 -1 ## —-j+N-1 >= 0
$ ——————— 1.2 Scattering
SCATTERING
5105201
e/il s1 s2 s3 s4 sb | i j I'N |1
o -1 0 0 0 0 0 0 0 0 ## s1 =0
0 o -1 0 0 0 1 0 0 0 ## s2 = 1
0 0 o -1 0 0 0 0 0 0 ## s3 = 0
0 0 0 o -1 0 0 1 0 0 ## s4 = j
0 0 0 0 o -1 0 0 0 0 ## sb =0
—————————————————— 1.3 Access
WRITE
383201
e/il Arr [1] [2] | i j N 11
o -1 0 0 0 0 0 1 ## C
0 o -1 0 1 0 0 0 ## [i]
0 0 o -1 0 1 0 0 #H# (3]
$# -————— 1.4 Statement Extensions
Number of Statement Extensions
1
<body>
Number of original iterators
2
Original iterator names
ij
Statement body expression
C[il[j] = 0.0;
</body>
Statement 2

Number of relations describing the statement

Chapter 3: OpenScop Specification

5
- 2.1 Domain
DOMAIN
663001
e/il i J k | N |1
1 1 0 0 0 0 ## 1 >=0
1 -1 0 0 1 -1 ## -i+N-1 >= 0
1 0 1 0 0 0 ## j >=0
1 o -1 0 1 -1 ## -j+N-1 >= 0
1 0 0 1 0 0 ## k >= 0
1 0 o -1 1 -1 ## -k+N-1 >= 0
———-—----— 2.2 Scattering
SCATTERING
7137301
e/il s1 s2 s3 s4 sb s6 s7 | i j k | N |1
o -1 0 0 0 0 0 0 0 0 0 0 0
0 o -1 0 0 0 0 0 1 0 0 0 0
0 0 o -1 0 0 0 0 0 0 0 0 0
0 0 0 o -1 0 0 0 0 1 0 0 0
0 0 0 0 o -1 0 0 0 0 0 0 1
0 0 0 0 0 o -1 0 0 0 1 0 0
0 0 0 0 0 0 o -1 0 0 0 0 0
————————————————— 2.3 Access
WRITE
393301
e/il Arr [1] [2] | i j k | N |1
o -1 0 0 0 0 0 0 1 ## C
0 o -1 0 1 0 0 0 0 ## [i]
0 0 o -1 0 1 0 0 0 #i#t (3]
READ
393301
e/il Arr [1] [2] | i j k | N |1
o -1 0 0 0 0 0 0 1 ## C
0 o -1 0 1 0 0 0 0 ## [i]
0 0 o -1 0 1 0 0 0 ## (3]
READ
393301
#e/il Arr [11 [211i j k IN |1
o -1 0 0 0 0 0 0 2 ## A
0 o -1 0 1 0 0 0 0 ## [i]
0 0 o -1 0 0 1 0 0 #Hit (k]
READ
393301
e/il Arr [1] [2] | i j k | N |1
o -1 0 0 0 0 0 0 3 ## B
0 o -1 0 0 0 1 0 0 ## [k]

##
##
##
##
##
##
##

s1
s2

17

s3 =

s4
sb
s6
s7

O N =G« O KH O

18 OpenScop Specification and Library

0 0 0 -1 0 1 0 0 0 ## (3]
———— 1.4 Statement Extensions
Number of Statement Extensions
1
<body>
Number of original iterators
3
Original iterator names
ijk

Statement body expression
Clil[j] = clil(j] + A[il[x] * B[k][jl;
</body>

= Extensions
<comment>

May the power of the polyhedral model be with you.
</comment>

</0penScop>

We will not describe here precisely the structure and the components of this output, this is
described in depth in a further section (see Section 3.2 [OpenScop File Format Specification],
page 18). This format has been designed to be a possible input or output file format of most
of polyhedral compilation tools. If you read the description of the polyhedral representation
of programs, you should already feel familiar with this file format (see Chapter 2 [Polyhedral
Representation|, page 3).

3.2 OpenScop File Format Specification

The following grammar describes the structure of the OpenScop file format where terminals are
preceeded by "_". Except stated otherwise, there can be at most one terminal per line in the
file. Moreover, each line may finish with a comment, starting by the ‘#’ character. Each relevant
part will be explained in more details momentarily:

OpenScop ::= Start_tag Data End_tag

Start_tag ::= "<OpenScop>"

End_tag ::= "</OpenScop>"

Data ::= Context Statements Extension_list
Context ::= Language Parameter_Domain Parameters
Statements ::= Nb_statements Statement_list
Statement_list ::= Statement Statement_list | (void)
Relation_list ::= _Relation Relation_list | (void)
Extension_list ::= _Generic Extension_list | (void)
Statement ::= Statement_relations Statement_extensions
Statement_extensions ::= Num_Extensions Extension_list
Parameters ::= "O" | "1" Parameter_information
Statement_relations ::= Nb_relations Relation_List
Parameter_domain = _Relation

Language = _String

Nb_Relations = _Integer

Num_extensions = _Integer

Parameter_information ::= _Generic

Chapter 3: OpenScop Specification 19

The ‘Context’ and the ‘Statements’ parts compose the core part, i.e., what is strictly nec-
essary to build a complete source to source framework based on OpenSCop:

e ‘Context’ represents the global information of the SCoP. It consists on the target language,
the global constraints on the parameters and optionally the parameter information which
may be necessary for the code generation process. The constraints on the parameters are
represented as a relation (see Section 3.2.1.2 [Context Domain Relation], page 22). The
parameter information is optional. It is preceded by a boolean which precises whether it
is provided or not. It is a generic information (see Section 3.2.2 [Generics], page 23), a
strings (see Section 3.2.2.1 [Strings Generic|, page 23) for instance.

e ‘Statements’ represents the information about the statements. ‘Nb_statements’ is
the number of statements in the SCoP, i.e. the number of ‘Statement’ items in the
‘Statement_list’. ‘Statement’ represents the information on a given statement. To each
statement is associated a list of relations and, optionaly, a list of statement extensions.
The list of relations may include one iteration domain (see Section 3.2.1.1 [Iteration
Domain Relation|, page 20), one scattering relation (see Section 3.2.1.3 [Scattering
Relation]|, page 22) and several access relations (see Section 3.2.1.4 [Access Relation],
page 22). There is no mandatory ordering, but for consistency reason it would be much
appreciated that iteration domain comes first (if present) then scattering (if present), then
accesses (if present). The statement extensions is an optional information. It starts with a
integer which precises the number of extensions provided. It is generic information (see
Section 3.2.2 [Generics|, page 23), a body (see Section 3.2.2.2 [Body Generic|, page 23) for
instance.

The ‘Extension_list’ represents the extension part and may contain an arbitrary number of
generic informations (see Section 3.2.2 [Generics], page 23). Few examples of possible extensions
are presented in a further section (see Section 3.4 [Extensions|, page 30).

As shown by the grammar, the input file describes the various pieces of information based on
strings, integers, relations and generics. Relations and Generics are specific to OpenScop and
are described in depth in the following Sections (see Section 3.2.1 [Relations], page 19, and see
Section 3.2.2 [Generics], page 23).

3.2.1 Relations

Relations are the essence of the OpenScop format and contain the "polyhedral" information.
They are used to describe either an iteration domain, or a context domain, or a scattering or a
memory access.

We use the relation term as a shortcut to denote a union of convex relations, each element
of the union being described by a set of constraints in an extended PolyLib format (see [Wil93],
page 47). The number of elements in the union is given by an integer on the first line, optionally
followed by a comment starting with ‘#’. This number of elements can be omitted when there
is only one element. Each element in the union has the following syntax:

1. Some optional comment lines beginning with ‘#’.

2. A line with the type of the relation, possibly followed by comments. The type can be one
of the following:

e UNDEFINED: generic relation,

e CONTEXT: for context information,
e DOMAIN: for iteration domains,

e SCATTERING: for scattering relation,
e READ: for read accesses,

e WRITE: for write accesses,

20 OpenScop Specification and Library

e MAY_WRITE: for may-write accesses,
3. A line with 6 numbers, possibly followed by comments:
the number of rows of the constraint matrix,
the number of columns of the constraint matrix,
the number of output dimensions,

the number of input dimension,

ot W

the number of local dimensions (existentially quantified dimensions),

6. the number of parameters.

The sum of the last four numbers should be equal to the number of columns minus two.
The remaining two columns are the equality/inequality indicator and the constant term.
The number of parameters should be the same for all relations in the entire OpenScop file
or data structure.

4. The constraint rows. Each row corresponds to a constraint the relation has to satisfy. Each
row must be on a single line and is possibly followed by comments. The constraint is an
equality p(x) = 0 if the first element is 0, an inequality p(z) > 0 if the first element is 1.
The next elements are the coefficients of the output dimensions, followed by coefficients of
the input dimensions, the existentially quantified dimensions and finally the parameters.
The last element is the constant term.

This representation is the basis for several purposes. Examples for iteration domains (see
Section 3.2.1.1 [Iteration Domain Relation], page 20), context domains (see Section 3.2.1.2 [Con-
text Domain Relation], page 22), scattering relations (see Section 3.2.1.3 [Scattering Relation],
page 22) and access relations (see Section 3.2.1.4 [Access Relation], page 22) are provided in
further sections.

3.2.1.1 Iteration Domain Relation

Iteration domain represents the set of instances of the corresponding statement. OpenScop
iteration domains are represented as relations with the following conventions:

e the type is DOMAIN,
e there is 0 input dimension,
e loop iterators correspond to output dimensions.

For instance, assuming that ‘i’; ‘j’ and ‘k’ are the loop iterators and ‘M’ and ‘N’ are the param-
eters, the domain defined by the following constraints :

—i+M >0
—j+N >0
i+5—k >0
can be written in the input file as follows:
This is an iteration domain
DOMAIN
1 # Number of relations in the union
373002 # 3 rows, 7 cols: 3 output dims and 2 params
#e/ili j kX I M N1
1 -1 0 0 1 0 0 # -i+M>0
1 o -1 0 0 1 0O # -j +N>0
1 1 1 -1 0 0 O#i+j-k>0

Chapter 3: OpenScop Specification 21

Equivalently, it can be written in the following way as the number of relations in the union can
be omitted if it is 1:

This is an iteration domain

DOMAIN
373002 # 3 rows, 7 cols: 3 output dims and 2 params
#e/ili j kIM N1

i -1 0 O 1 0 O¢# -i+M>0

i 0 -1 0 0 1 O¢# -j+N>0

i1 1 1 -1 0 0O O#i+j-k>0

As an example for unions, let us consider the following pseudo-code:

for (i = 1; i <= N; i++) {
if (@ >=M || (1 <= 2+%M))
S1(1);
}

The iteration domain of ‘S1’ can be divided into two relations and written in the OpenScop file
as follows:

This is an iteration domain
DOMAIN
2 # Number of relations in the union

Union part No.1
351002 # 3 rows, 5 cols: 1 output dim and 2 params
#e/il i I M N |1

1 1 0 0 -1# 1i>=1

1 -1 0 1 O0# 1ic<=

1 1 -1 0 O0O# 1i>M
Union part No.2
351002 # 3 rows, 5 cols: 1 output dim and 2 params
#e/il i 1M NI 1

1 1 0 0 -1# 1i>=1

1 -1 0 1 O0O# i<=N

1 -1 2 0 O0# i<=2xM

As an example for local dimensions (existentially quantified dimensions), let us consider the
following pseudo-code:

for (i = 1; i <= N; i++) {
if (A % 2) == 0)
S1(i);
}

The iteration domain of ‘S1’ is composed of all even integer values between 1 and N. The
"divisible by two" constraint can be expressed as follows: there exists an integer ‘1d’ such that
‘i = 2x1d’. We encode this thanks to a new local dimension:

This is an iteration domain

DOMAIN
351011 # 3 rows, 5 cols: 1 output dim, 1 local dim, 1 param
#e/il 1 114 | N | 1

0 1 -2 0 O# i = 2x1d

1 1 0 0 1# i>=1

1 -1 0 1 O# 1i<=N

22 OpenScop Specification and Library

3.2.1.2 Context Domain Relation

The context domain is a particular case of iteration domain (see Section 3.2.1.1 [Iteration Domain
Relation], page 20) where there are only constraints about parameters (no loop iterators). Hence
it is the same as an iteration domain, with the following conventions:

e the type is CONTEXT,
e there is 0 input dimension,

e there is 0 output dimension.

3.2.1.3 Scattering Relation

Scattering relation maps an iteration domain to a logical time and/or space (and/or) any-
thing. OpenScop scattering information is represented as relations (see Section 3.2.1 [Relations],
page 19) with the following conventions:

e the type is SCATTERING,
e output dimensions correspond to scattering dimensions,
e loop iterators correspond to input dimensions.
As an example of a scattering relation and assuming that ‘i’ ‘j’ and ‘k’ are the loop iterators

and ‘M’ and ‘N’ are the parameters, take for instance: 6g(i,j,k) = (j +2,3xi+ j,k+ N + 1).
We can represent it in the following way:

A scattering relation

SCATTERING
3 rows, 10 columns: 3 scattering dimensions, 3 iterators, 2 parameters
3103 302
e/ilsl s2 83 | i J k| M N | 1
o -1 0 0 0 1 0 0 0 2 # s1 = j+2
0 0o -1 0 3 1 0 0 0 0 # s2 = 3*i+j
0 0 0 -1 0 0 1 0 1 1 # s3 = k+N+1

3.2.1.4 Access Relation

Access relation maps an iteration domain to an array space. Each array accessed in the SCoP
has a unique identification number. OpenScop relation information is represented as relations
(see Section 3.2.1 [Relations|, page 19) with the following conventions:

e the type is one of the following:
e READ, for read accesses,
e WRITE, for write accesses,

e MAY_WRITE, for may write accesses,

output dimensions correspond to the array identifier and dimensions,

the first output dimension corresponds to the array identifier,

the (i+1)th output dimension corresponds to the ith array dimension (i>1),

loop iterators correspond to input dimensions.

As an example of a scattering relation and assuming that ‘i’ ‘j’ and ‘k’ are the loop iterators
and ‘M and ‘N’ are the parameters, let us consider the array access A[2*i+j] [j][i+N] (the
identifier of A is 42), and let us suppose this is a read access. Its representation would be the
following;:

Chapter 3: OpenScop Specification 23

A read access relation

READ
4 rows, 11 columns: 4 array dimensions, 3 iterators, 2 parameters
4 11 430 2
e/ilArr [1] [2] [3]1'1 j kI M N |1
0o -1 0 0 0 0 0 0 0 0 42 # A
0 0 -1 0 0 2 1 0 0 0 0 # [2xi+j]
0 0 o -1 0 0 1 0 0 0 0 # (]
0 0 0 0o -1 1 0 0 0 1 0 # [i+N]

To understand this representation, consider that OpenScop accesses are general memory
accesses and not array accesses. The memory is seen as a big array Mem while usual array names
correspond to the first dimension. Hence our example translates to Mem[42] [2*i+3j] [j] [i+N].

Unions of access relations are allowed. In this case, each union part must refer at the same
array identifier, and the number of dimensions must be consistent.

3.2.2 Generics

Generics represent any elaborated non-polyhedral information in the OpenScop format. They
are used to represent the parameter information, the statement body information as well as
the extensions. Each generic information is delimited using XML-like tags corresponding to its
URI (Unique Resource Identifier), For instance, if the generic has the URI foo, the begin tag is
<foo> and the end tag is </foo>).

Two generics, namely strings (see Section 3.2.2.1 [Strings Generic|, page 23) and body
(see Section 3.2.2.2 [Body Genericl, page 23) are part of the OpenScop specification to provide
the minimum, stricly necessary information to build a complete source-to-source polyhedral
framework based on OpenScop. However, generics can be basically anything as long as they are
properly delimited. OpenScop implementations will simply ignore non-supported generics and
warn the user with the mention of the non-supported URIs. Support of new generics will be
added throught the extension mechanism.

3.2.2.1 Strings Generic

The purpose of the strings generic is to represent a list of textual strings on one line (which
may be used, e.g., to represent the list of parameter names in the order used in the relation).
Its URI is strings and its file format respects the following grammar:

Strings_generic ::= "<strings>" Strings "</strings>"
Strings ::= _String String_list | (void)
A possible example of textual strings is the following:
<strings>
Not one sentence but 6 strings!
</strings>

3.2.2.2 Body Generic

The purpose of the body generic is to represent the textual information about a statement. It
contains the number of original iterators on the first line, the list of original iterators on the
second line (the loop counters of the statement surrounding loops in the original program) and
the original textual body expression on the third line. Its URI is body and its file format respects
the following grammar (the String rule is reused, see Section 3.2.2.1 [Strings Generic], page 23):

Body_generic ::= "<body>" Body "</body>"

Body : Nb_iterators Iterator_list Expression

Nb_iterators _Integer

Iterator_list Strings

24 OpenScop Specification and Library

Expression ::= Strings

A possible example of textual body is the following:

<body>

Number of original iterators
2

Original iterators

1]

Original statement expression
A[i+j] += B[i] * C[j];
</body>

3.3 OpenScop Data Structure Specification

The OpenScop specification offers a small set of C data structures devoted to represent a SCoP
in memory in a convenient way. Using them in some tool or library may greatly facilitate its
interaction with other tools or libraries which rely on this representation as well. Every field may
not be useful for a given tool or library. A general rule for all the data structure is that a NULL
pointer or a -1 integer value means the information is not present. Contrary to engineering time,
memory is cheap today, so it’s much probably not a big deal that some fields are left empty.
Every field may not be enough for a given tool or library. In this case it is much recommended
to provide a new extension which may be reused by other users (see Section 3.4 [Extensions],
page 30).

Each tool or library may have its own implementation of the OpenScop data structures. The
type names should not be the same as those provided as an example here (they correspond
to the OpenScop Library implementation). The names of the fields, and their ordering, should
however be the same. In this way, the interaction between tools and libraries should be as simple
as a cast.

Before reading at the OpenScop data structures, it is much recommended to read at the
OpenScop file format description, as it is quite close to this representation (see Section 3.2
[OpenScop File Format Specification], page 18).

3.3.1 osl_int_t

union osl_int {

long int sp; /* Single precision int */
long long dp; /* Double precision int */
voidx mp; /* Pointer to a multiple precision int */

s
typedef union osl_int osl_int_t;
typedef union osl_int* osl_int_p;

The osl_int_t union stores an integer element. The union is used to implement the multiple
precision support of OpenScop. A given implementation may or may not support a given
precision type. However, dedicated functions or macros must tell the user whether a given
precision type is supported or not. The mp field is a pointer to a multiple precision int, e.g., a
mpz_t from the GNU GMP library.

Chapter 3: OpenScop Specification 25

3.3.2 osl_relation_t

struct osl_relation {

int type; /* What this relation is encoding */
int precision; /* Precision of the matrix elements */
int nb_rows; /* Number of rows */

int nb_columns; /* Number of columns */

int nb_output_dims; /* Number of output dimensions */
int nb_input_dims; /* Number of input dimensions */

int nb_local_dims; /* Number of local dimensions */

int nb_parameters; /* Number of parameters */
osl_int_t** m; /* Matrix of constraints */

void* usr; /* User-managed field */

struct osl_relation* next; /* Next relation in the union */

s
typedef struct osl_relation osl_relation_t;
typedef struct osl_relation* osl_relation_p;

The osl_relation_t structure stores a part of an union of relations. A union of relation is
a NULL-terminated linked list of union parts (next field). The type field may provide some
information about what the relation is encoding;:

e -1: undefined (OSL_UNDEFINED),

context domain (OSL_TYPE_CONTEXT),
iteration domain (OSL_TYPE_DOMAIN),
scattering relation (OSL_TYPE_SCATTERING),

read access relation (OSL_TYPE_READ),
write access relation (0SL_TYPE_WRITE),
may write access relation (OSL_TYPE_MAY_WRITE),

I ST o

The various numbers provide the details on the relation itself (see Section 3.2.1 [Relations],
page 19) while the m field points to the constraint matrix. The precision of the constraint matrix
elements is provided by the precision field. It can take the following values:

e 32: 32 bits precision, elements are long int (OSL_PRECISION_SP),
e (4: 64 bits precision, elements are long long int (OSL_PRECISION_DP),
e 0: multiple precision, elements are GNU GMP Library’s mpz_t (0SL_PRECISION_MP).

Finally, the usr field is provided for user’s convenience.

3.3.3 osl_relation_list_t

struct osl_relation_list {
osl_relation_p elt; /* Element of the list */
struct osl_relation_list* next; /* Next element of the list */
s
typedef struct osl_relation_list osl_relation_list_t;
typedef struct osl_relation_list* osl_relation_list_p;

The osl_relation_list_t structure is a NULL-terminated linked list of os1_relation_t data
structures. elt is a relation element of the list and next is the pointer to the next element of
the list.

26 OpenScop Specification and Library

3.3.4 osl_interface_t

typedef void (*osl_idump_f) (FILE*, void*, int);
typedef char* (*osl_sprint_f) (void*);

typedef voidx (*osl_sread_f) (charx);

typedef void* (*osl_malloc_f)();

typedef void (*osl_free_f) (voidx);

typedef void* (*o0sl_clone_f) (voidx);

typedef int (*osl_equal_f) (void#*, voidx);

struct osl_interface {

char* URI; /* Unique interface identifier string */
osl_idump_f idump; /* Pointer to the idump function */
osl_sprint_f sprint; /* Pointer to the sprint function */
osl_sread_f sread; /* Pointer to the sread function */
osl_malloc_f malloc; /* Pointer to the malloc function */
osl_free_f free; /* Pointer to the free function */
osl_clone_f <clone; /* Pointer to the clone function */
osl_equal_f equal; /* Pointer to the equal function */
struct osl_interface* next; /* Next interface in the list */

+;

typedef struct osl_interface osl_interface_t;

typedef struct osl_interface* osl_interface_p;
The osl_interface_t structure represents a node in a NULL-terminated list of interfaces. Each
node stores the interface of a generic OpenScop object, i.e., its unique name (URI) and the
function pointers to all the base functions it has to provide. Extension providers will find
information relative to those functions in the OpenScop Library description (see Section 4.2
[Base Functions|, page 39) and the section dedicated to writing extensions (see Section 4.6.4
[Extension Development|, page 44).

3.3.5 osl_generic_t

struct osl_generic {

void* data; /* Pointer to some data */
osl_interface_p interface; /* Interface to work with the data */
struct osl_generic* next; /* Pointer to the next generic */

s
typedef struct osl_generic osl_generic_t;
typedef struct osl_generic* osl_generic_p;

The osl_generic_t structure represents a node in a NULL-terminated list of generic elements. It
stores some data and operations with no pre-defined type. The information is accessible through
the data pointer while the type and operations are accessible through the interface pointer.
It is used to represent data that are allowed to differ in implementations, such as symbols and
extensions.

3.3.6 osl_strings_t

struct osl_string {
char** string; /* NULL-terminated array of strings */
s
typedef struct osl_strings osl_strings_t;
typedef struct osl_strings* osl_strings_p;

The osl_strings_t structure represents a NULL-terminated list of C character strings. It is
encapsulated into a structure to allow its manipulation through a generic type.

Chapter 3: OpenScop Specification 27

3.3.7 osl_body_t

struct osl_body {
osl_strings_p iterators; /* Original iterators x/
osl_strings_p expression; /* Original statement expression */
s
typedef struct osl_body osl_body_t;
typedef struct osl_body* osl_body_p;

The osl_body_t structure stores a statement body in a textual form. The complete original
expression (directly copy-pasted from the original code) is in the expression field while the textual
forms of the original iterators are in the iterators field. They may be used for substitutions inside
the expression.

3.3.8 osl_statement_t

struct osl_statement {
osl_relation_p domain; /* Iteration domain */
osl_relation_p scattering; /* Scattering relation */
osl_relation_list_p access; /* List of array access relations */

osl_generic_p extension; /* Generic extensions */
void* usr; /* A user-defined field */
struct osl_statement* next; /* Next statement in the list */

s
typedef struct osl_statement osl_statement_t;
typedef struct osl_statement* osl_statement_p;

The osl_statement_t structure represents a node in a NULL-terminated linked list of statements.
Each node contains the useful information for a given statement to process it within a polyhedral
framework. The order in the list may matter for naming conventions (e.g. "S1" for the first
statement in the list). The iteration domain and the scattering are represented using an osl_
relation_p structure while the accesses are using a list of relations: one for each memory access
in the statement. The extensions part is a list of generics osl_generic_t which can contain
useful structures such as body. The body field should provide information about the statement
body (since it has a generic type, the specification is not strict about how it is used), e.g., using
the osl_body_t data structure (see Section 3.3.7 [osl_body_t], page 27). It is also possible to
use the usr field, but it has to be totally managed by the user.

3.3.9 osl_scop-_t

struct osl_scop {

int version; /* Version of the data structure */
char* language; /* Target language */

osl_relation_p context; /* Constraints on the parameters */
osl_generic_p parameters; /* Information about parameters */
osl_statement_p statement; /* Statement list */

osl_interface_p registry; /* Registered extension interfaces */
osl_generic_p extension; /* Extension list */

void* usr; /* A user—-defined field */

struct osl_scop* next; /* Next scop in the list */

s
typedef struct osl_scop osl_scop_t;
typedef struct osl_scop* osl_scop_p;

osl_scop_t represents a node in a NULL-terminated list of scops. It stores the useful informa-
tions of a static control part of a program to process it within a polyhedral framework. To

28 OpenScop Specification and Library

prepare OpenScop specification evolution, the version field tells the version of the data struc-
ture. It should be set to 1 for now (and hopefully a very, very, long time). First, it contains
the informations about the context. The target language in expressed in the language field.
The constraints on the global parameters are detailed in the context field. The paremeters
field should provide information about the parameters (since it has a generic type, the speci-
fication is not strict about how it is used), e.g., using the osl_strings_t data structure (see
Section 3.3.6 [osl_strings_t], page 26). Finally, it contains the list of statements statement, the
list of registered interfaces for generic types registry and the list of extentions extension. It
is also possible to use the usr field, but it has to be totally managed by the user.

As an example, let us consider again the matrix multiply program (see Section 3.1 [Prelim-
inary Example], page 15). The next figure gives a possible representation in memory for this
SCoP thanks to the OpenScop data structures (it has been actually printed by the osl_scop_
dump function), note that symbols like parameters, original iterators and statement expression
are represented with an osl_strings_t which does not belong to the specification but to the
OpenScop Library implementation:

+-— osl_scop_t

|

Version: 1

I

Language: C

|

+-- osl_relation_t (CONTEXT, 32 bits)
| 130001

I [1 1 -11]

I

+-- osl_generic_t

| |

| +-- osl_interface_t: URI = strings
I I

| +-- osl_strings_t: N

|

|

+-- osl_statement_t (S1)

|

+-- osl_relation_t (DOMAIN, 32 bits)
52001

+-— osl_relation_list_t

I

I

I 4

/| [1 1 0 0 0]

[1 [1 -1 0o 1 -1]

/| | [1 o 1 0 01

/! [1 o0 -1 1 -11]

I

| +-- osl_relation_t (SCATTERING, 32 bits)

| | 5105201

/| | [o -1 0 O O O 0 0 o0 01
/| [o o0 -1t 0 O o0 1 0 0 0]
/ | [o o o -1 0 0 0 0 o0 0]
/ | [o o o o0 -1 o0 o0 1 o0 01
/ | [o o o o o0 -1 0 0 o0 01
I

|

I

29

Chapter 3: OpenScop Specification

01
01
01
0]
1]
0]
01

B M —/
— O O ~
O O O +H O O O
e I e B e |
— O O o O O o
O —+H O O O O O
~ ~ ~
n o O O n n o O O ~ o
+L M + O O O O O o +)]
o o o | o +
Q > : ~ Q Q o
O O o o n O O H Q o
N o 8 N O O OO O —H O AN
™ Q] - ™ [[22] N
Q L B B e W e B e B | [92]
~ O - O] — -~ - O —H O o
] M) N O —H O — O (& O O O O —+H O O [£a] -~
= H — ™ | [| = | = (]
H— " (] H L <
/" O O = ™ - ~ [ast /" o O [x] o
= | — = O - O+ O [£a] O OO +H O OO = [~
< .. o &) — [| < ~
e << =
+ o —H O | R . = <3 + + o —H O + o
| | (O] + + o O O O O O O O +H O O O O | | | + |
g — O | | a | wn | + g | g
o « n n ~ ~ n o L o
—A O «—+H O O 4 o jolo} - —H O 1 O O] - O
+ | ~ a a ~ + O O +H +H O O + O 1 O O O O O — +L | - +L |
g N + (O] - - AN | | | | | g ™M — g m
— | + ~ ~ n g q q — | —
QMO O O O =] + +L ~ (o] o O [e] O M O O O [=] O M O
“ sl - n n - O —H —H O O O O o - O O O O O O o “ (o] “
| 00 S | | | + L | L2 M | + | O -~ | O
— (0] — — — | g O o « — L —
n M- [=] n n n L — —~ M~ — n M- - « n mn—
(@] [0] (@] o (o] [=] O M A v~ (O] O O O O O O o (O] o — o
a0 (0] ~ o M ~ [)
| | | | | g | © | | | ~ |
| — | | | [] — — — | | |
 — = - — — n — 4+ — 4+ — + — P N O — W M = N — + —— — — — > — 4 — —
o [0} o o o n
+ o
| n | | |
| | | | |
-_——_—-n--—-t-—----—--———p>r d -+ ---———Vt+ -t - —-—--—--—-————— = —
n
(@]

30 OpenScop Specification and Library

|
| [o 0 0o -1 0o 1 0 O 01
I

')
osl_relation_list_t

|

+-- osl_relation_t (READ, 32 bits)

[393301

| [0o -1 0 0 0 0 0 0 2]
/| [o o0 -1 0 1 0 O
| [
I

o
o
—

o 0 0 -1t o o0 1 o0 01

Vv
osl_relation_list_t

|
+-- osl_relation_t (READ, 32 bits)

I 393301

I [o -1 0 O O O o0 0 3]
I [o 0 -1 0 © 1 0 0]
I [o 0 O -1 0 1 0 0 01
I

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| +-- osl_generic_t

| | |

| | +-- osl_interface_t: URI = body

| | [

| | +-— osl_strings_t: i j k

| | [

| | +-— osl_strings_t: C[i][j] = C[i]([j] + A[i] [kx]1*B[k] [j];
| | [

| |

|

+-- NULL interface

|

+-- NULL generic

3.4 Extensions

The core part of the OpenScop representation embeds what is strictly necessary to build a com-
plete source-to-source polyhedral framework. However it may not be enough. Hence, OpenScop
offers a very flexible extension part. Actually, the only constraint to build an extension is to
request the OpenScop maintainer for a unique extension name: its URI (ask the maintainer
through the OpenScop mailing list openscop-development@googlegroups.com).

The policy to support extensions is the following and is pretty simple: an OpenScop imple-
mentation is not required to support any extension. If it is processing an OpenScop file or data
structure which contains an extension which is not supported, it must (1) warn the user with
the mention of the URI of the non-supported extension and (2) ignore this extension.

Extensions in an OpenScop file are provided after the core part, without any specific order.
Each extension is delimited using XML-like tags corresponding to its URI (e.g., if the extension
has the URI foo, the begin tag is <foo> and the end tag is </foo>). There is no specification or

mailto:openscop-development@googlegroups.com

Chapter 3: OpenScop Specification 31

preferred way to write the extension body. Extensions in an OpenScop data structure must be
accessible through one pointer. This pointer will be stored in the data field of an osl_generic_
t container (see Section 3.3.5 [osl_generic_t], page 26). There must be only one extension with
the same URI in an OpenScop file or data structure.

Extension writers may write a short documentation about their extension to be added to this
document. For consistency reason, this documentation should comply to the documentation of
the comment option (see Section 3.4.1 [Comment Extension], page 31). To describe the file
format, it is allowed to reuse the existing rules and terminals present in the OpenScop file
format description without defining them (see Section 3.2 [OpenScop File Format Specification],
page 18). By sending a documentation, you accept it to be added to this document. In particular,
the sender fully accepts the license and copyright notice.

3.4.1 Comment Extension
Description
e URI: comment.
e Author: Cédric Bastoul <cedric.bastoul@u-psud.fr>.

e Purpose: the comment extension stores a textual string.

File Format
The comment extension file format respects the following grammar:

Comment_generic ::= "<comment>" Comment "</comment>"
Comment _Text

An example of textual comment extension is the following:

<comment>
This is a comment string.
</comment>

Data Structure
The comment extension data structure is the following:

struct osl_comment {
char* comment; /* Comment message as a O-terminated string */
s
typedef struct osl_comment osl_comment_t;
typedef struct osl_comment* osl_comment_p;

3.4.2 Scatnames Extension
Description
e URI: scatnames.
e Author: Cédric Bastoul <cedric.bastoul@u-psud.fr>.

e Purpose: the scatnames extension provides a list of textual scattering dimension names.

File Format

The scatnames extension file format respects the following grammar. It reuses the Strings
description (see Section 3.2.2.1 [Strings Generic|, page 23):

Scatnames_generic ::= "<scatnames>" Scatnames "</scatnames>"
Scatnames Strings

The list of scattering dimension names is provided on one single line. The names are separated
with spaces. A possible example of such an extension is the following;:

32 OpenScop Specification and Library

<scatnames>

List of scattering dimension names:
beta_0 i beta_l j beta_2
</scatnames>

Data Structure
The scatnames extension data structure is the following:

struct osl_scatnames {
osl_strings_p names; /* List of textual scattering dimension names. */
s
typedef struct osl_scatnames osl_scatnames_t;
typedef struct osl_scatnames* osl_scatnames_p;

The order of the scattering dimension names in the list corresponds to the order of the scattering
dimensions

3.4.3 Arrays Extension
Description
e URI: arrays.
e Author: Cédric Bastoul <cedric.bastoul@u-psud.fr>.
e Purpose: the arrays extension provides a set of textual array names corresponding to the
array identifiers used in the access relations.
File Format

The arrays extension file format respects the following grammar:

Arrays_generic ::= "<arrays>" Arrays "</arrays>"
Arrays = Nb_items Item_list

Ttem_List = Item Item_list | (void)

Item = Identifier Name

Nb_items = _Integer

Identifier = _Integer

Name = _String

The number of array names is provided on the first line, then each following line contains a couple
identifier-name. For instance, the following example is a correct textual arrays extension.
It corresponds to the array names of the preliminary example (see Section 3.1 [Preliminary
Example], page 15):

<arrays>

Number of array names:

3

1 C # Identifier 1 corresponds to array name "C"

3 B # Identifier 3 corresponds to array name "B"

2 A # Identifier 2 corresponds to array name "A"

</arrays>
Data Structure
The arrays extension data structure is the following:

struct osl_arrays {

int nb_names; /* Number of names */
int * id; /* Array of nb_names identifiers */
char** names; /* Array of nb_names names */

s
typedef struct osl_arrays osl_arrays_t;
typedef struct osl_arrays* osl_arrays_p;

Chapter 3: OpenScop Specification 33

Each name has a name string and an identifier: the ith name has name string names[i] and
identifier id[i].

3.4.4 Coordinates Extension
Description
e URI: coordinates
e Author: Cédric Bastoul <cedric.bastoul@Qu-psud.fr>.

e Purpose: the coordinates extension provides the information about the SCoP location in
the original code: the original file name/path, the starting and ending lines of the SCoP in
this file (inclusives) and the indentation level.

File Format

The coordinates extension file format respects the following grammar:

Coordinates_generic ::= "<coordinates>" Coordinates "</coordinates>"
Coordinates = File_name Start_line Start_column
End_line End_column Indentation

File_name = _String

Start_line = _Integer

Start_column = _Integer

End_line = _Integer

End_column = _Integer

Indentation = _Integer

The original file name where the SCoP has been extracted is provided on the first line, then the
starting line and column numbers of the SCoP, then the ending line and column numbers of the
SCoP, and lastly the indentation level (the number of spaces characters each line of the SCoP
starts with). For instance, the following example is a correct textual coordinates extension:

<coordinates>

File name

./test/ax-do.c

Starting line and column

93

Ending line and column

15 4

Indentation

2

</coordinates>

Data Structure
The coordinates extension data structure is the following:

struct osl_coordinates {

char* name; /* File name */

int start; /* First line of the SCoP in the source file */
int end; /* Last line of the SCoP in the source file */
int indent; /* Indentation */

s
typedef struct osl_coordinates osl_coordinates_t;
typedef struct osl_coordinates* osl_coordinates_p;

3.4.5 Clay Extension
Description
e URI: clay.

34 OpenScop Specification and Library

e Author: Cédric Bastoul <cedric.bastoul@u-psud.fr>.

e Purpose: the clay extension stores a Clay script.

File Format

The clay extension file format respects the following grammar:

"<clay>" Clay "</clay>"
_Text

Clay_generic
Clay

An example of a clay extension is the following:

<clay>

fission([2,1], 1);
stripmine([2], 32, 1);
unroll([3], 4);
</clay>

Data Structure
The clay extension data structure is the following:

struct osl_clay {
char* script; /* Clay script as a O-terminated string */
s
typedef struct osl_clay osl_clay_t;
typedef struct osl_clay* osl_clay_p;

3.4.6 Extbody Extension
Description
e URI: extbody.
e Author: Joel Poudroux <joel.poudroux@u-psud.fr>.
e Purpose: the extbody extension provides a list of coordinates to locate each access easily
in the body string.

File Format

The extbody extension file format respects the following grammar. It reuses the Body description
(see Section 3.2.2.2 [Body Generic|, page 23)

Extbody_generic "<extbody>" Extbody "</extbody>"

Extbody = Coordinate_number Coordinate_list Body
Coordinate_list ::= Access_start Access_length Coordinate_list | (void)
Coordinate_number ::= _Integer

Access_start ::= _Integer

Access_length ::= _Integer

This extension extends the see Section 3.2.2.2 [Body Generic|, page 23. The number of accesses
Coordinate_number must be equal to the number of access relations in the statement. Each
coordinate is associated with the corresponding access relation in the access relation list (the
order matters). It is possible that an access has two relations in the access relation list (when
it is in read/write mode). In this case we can replace one of the couple of coordinates with a
(-1 -1). It is possible to put twice the same coordinates, but using (-1 -1) may improve some
tool efficiency (e.g., Clay would apply twice the same processing otherwise). For each access,
Access_start is the index of this acces in the body string (starting from 0), and Access_length
is the length of the access text. For instance:

Chapter 3: OpenScop Specification 35

<extbody>
Number of access
3
Mapping start/length
0 1 # a coordinates (read)
-1 -1 # a coordinates (write)
6 9 # b coordinates
Number of original iterators
0
Statement body expression
a++ + bli+1][j];
</extbody>

Data Structure

The extbody extension data structure is the following:

struct osl_extbody {
osl_body_p body;

int nb_access; /**x< Nb of access. */
int * start; /*%< Array of nb_access start. */
int * length; /**< Array of nb_access length. */

s
typedef struct osl_extbody osl_extbody_t;
typedef struct osl_extbody* osl_extbody_p;

3.4.7 Loop Extension

Description
e URI: loop.
e Author: Taj Muhammad Khan <taj.khan@inria.fr>.

e Purpose: the loop extension provides a means to transfer information about loops in the
original code. It starts with the number of loops in the SCoP. For each loop it records: the
iterator name, the number of statements, the statement identifiers, the names of private
variables, and an identifier for OpenMP pragma directive.

File Format
The coordinates extension file format respects the following grammar:

Loop_generic ::= "<loop>" Num_loops Loop_list "</loop>"

Num_loops = _Integer

Loop_list = Loop Loop_list | (void)

Loop ::= Iterator_name Nb_stmts Stmt_list
Private_variables Directive

Iterator_name ::= _String

Nb_stmts = _Integer

Stmt_list = Stmt_id Stmt_list | (void)

Stmt_id = _Integer

Private_variables = _String

Directive = _Integer

With in the tags, the number of loops is provided on the first line. Next comes a series of loop
structures. Within each loop, the first line contains the name of the iterator, next comes the
number of statements in the loop followed by their identifiers separated by spaces. Next line
contains the names of the private variables and in the end is the OpenMP pragma directive. In
case there are no private variables to be declared for a loop, the special string "(null)" should
replace their declaration as shown below.

36

OpenScop Specification and Library

For instance, the following example is a correct textual loop extension containing two loops:

<loop>

Number of loops
2

=

Loop number 1

Iterator name

t2

Number of stmts

1

Statement identifiers
1

Private variables
1bv,ubv

Directive

1

#

Loop number 2

Iterator name

t2

Number of stmts

1

Statement identifiers
2

Private variables
(null)

Directive

1

</loop>

The pragma directive can have one of the defined values:

OSL_LOOP_DIRECTIVE_NONE, OSL_

LOOP_DIRECTIVE_PARALLEL, OSL_LOCOP_DIRECTIVE_MPI, or OSL_LOOP_DIRECTIVE_VECTOR.

Data Structure

The loop extension data structure is the following:

struct osl_loop {
char * iter;
int nb_stmts;
int * stmt_ids;
char * private_vars;
int directive;
struct osl_loop * next;
s
typedef struct osl_loop

/*
/*
/*
/*
/*
/*

osl

3.4.8 Pluto unroll Extension

Description

e URI: pluto_unroll.

\O terminated iterator name */
Number of statements in the loop */
Array of statement identifiers. */
\O terminated variable names */

the OpenMP directive to implement */
pointer to the next element */

_loop_t;
typedef struct osl_loop * osl_

loop_p;

e Author: Lénaic Bagneres <lenaic.bagneres@inria.fr>.

Chapter 3: OpenScop Specification 37

e Purpose: the pluto_unroll extension provides a means to transfer unroll information from
Pluto in the SCoP. Pluto saves the iterator name, if unroll-and-jam or not and the unroll
factor for several loops.

File Format

The pluto_unroll extension file format respects the following grammar:

Pluto_unroll "<pluto_unroll>" Is_present Data_list "</pluto_unroll>"

Is_present = _Integer

Iterator_name = _String

Is_Jam = _Integer

Factor = _Integer

Data = Iterator_name Is_Jam Factor Is_present
Data_list = Data_list Data | (void)

With in the tags, the first line indicates if data are provided. Next comes three lines: iteraror
name, integer to know if jam or not and the unroll factor. Next line indicates if new data are
provided, etc.

For instance, the following example is a correct pluto_unroll extension containing two
unrolls:

<pluto_unroll>
1

Iterator name
t3

Jam

Factor

#
1
#
4
Next

1

Iterator name
t4

Jam

0

Factor

4

Next

0
</pluto_unroll>

Data Structure
The pluto_unroll extension data structure is the following:

struct osl_pluto_unroll {

charx* iter; /* \O terminated iterator name */
bool jam; /* true if jam, false otherwise */
unsigned int factor; /* unroll factor */

struct osl_pluto_unroll * next; /* next { iter, jam, factor } */

s
typedef struct osl_pluto_unroll osl_pluto_unroll_t;
typedef struct osl_pluto_unroll * osl_pluto_unroll_p;

3.4.9 Irregular Extension

38 OpenScop Specification and Library

3.5 History

OpenScop is a follow-up of Louis-Noél Pouchet et al.’s ScopLib effort which was itself based on
Cédric Bastoul et al.’s Clan tool. People involved in OpenScop’s genesis are:

Cédric Bastoul
Uday Bondhugula
Tobias Grosser
Louis-Noél Pouchet

Sven Verdoolaege

39

4 OpenScop Library

The OpenScop Library, or OSL for short, is an example implementation of the OpenScop spec-
ification. Its API is not part of the OpenScop specification. It offers basic functionalities to
manipulate the OpenScop data structures (allocate, free, copy, dump, etc.) and file format
(read, print, etc.). The OpenScop Library is not a polyhedral library. OpenScop is an exchange
format, and the OpenScop Library reflects this.

It is a Free Software using the 3-clause BSD License. Programmers should feel free to use it
or copy/paste its code in any project, Open Source or not'.

4.1 Precision

The OpenScop specification does not impose a specific type for the constraint matrix elements.
For a maximum flexibility, the OpenScop Library offers an hybrid precision implementation. It
supports 32 bits, 64 bits and multiple precision (relying on GNU GMP) relations transparently.
At relation allocation time, users have two ways to set the precision. The first way is to call an
allocation function with a precision parameter. The second way is to rely on the environment
variable OSL_PRECISION. The accepted values for this variable are 32 for 32 bits precision, 64
for 64 bits precision and 0 for multiple precision. When this variable is set, its value becomes
the default precision for relation elements. For instance, to ensure the OpenScop Library will
use 64 bits precision by default, the user may set:

export OSL_PRECISION=64
if his shell is, e.g., bash or
setenv OSL_PRECISION 64

if his shell is, e.g., tcsh. The user should ad this line to his .bashrc or .tecshre (or whatever
convenient file) to make this setting permanent.

The OpenScop Library provides the following function to know whether or not a given pre-
cision type is supported by the library or not:

int osl_int_is_precision_supported(int precision);

this function returns 1 if the precision type is supported, 0 otherwise. Possible values for the
precision parameter are 32 for 32 bits (single) precision, 64 for 64 bits (double) precision and
0 for multiple precision.

4.2 Base Functions

The OpenScop Library provides, for each OpenScop data structure, a set of functions devoted
to basic manipulation, conversion from file format to data structures and from data structures
to file format. The naming convention is consistent for all data structures. Hence, the function
prototypes differ only with the name of the data structure. In the following, we will use the
generic term of structure to refer at any OpenScop data structure. For instance the osl_
structure_malloc () function is a generic name can be instantiated to osl_relation_malloc()
or osl_statement_malloc() etc.

We present in this documentation only the main functions. Many other utility functions are
provided to ease OpenScop format manipulation. The reader is invited to refer at the technical
documentation to learn everything about the OpenScop Library.

1 Closed source projects should consider to provide some OpenScop file input and output, so they can be
incorporated to any OpenScop-based tool chain.

40 OpenScop Specification and Library

4.2.1 Dumping: osl_structure_dump and idump

void osl_structure_dump(FILE* output, osl_structure_p s);
void osl_structure_idump(FILE* output, osl_structure_p s, int i);

Fach OpenScop data structure has a dumping functions as shown above. Dumping means
writing down the content of the data structure pointed by s (and its fields recursively) in a
textual form to the output file (the file, possibly stdout, has to be open for writing). The
textual form is not the OpenScop file format but another representation closer to the internal
representation in memory and mainly intended for debugging purpose. The idump function has
an additional integer parameter which corresponds to an indentation level.

4.2.2 Printing: osl_structure_print
void osl_structure_print(FILE* output, osl_structure_p s);

Each OpenScop data structure has a pretty printing function as shown above. It prints the
content of the data structure pointed by s (and its fields recursively) according to the OpenScop
file format (see Section 3.2 [OpenScop File Format Specification], page 18) to the output file
(the file, possibly stdout, has to be open for writing).

4.2.3 Reading: osl_structure_read
osl_structure_p osl_structure_read(FILE* input);

Each OpenScop data structure has a reading function as shown above. It reads the content
of an OpenScop data structure written according to the OpenScop file format (see Section 3.2
[OpenScop File Format Specification], page 18) from the input file (the file, possibly stdin, has
to be open for reading). It returns a pointer to a freshly allocated osl_structure_t structure
containing the information.

4.2.4 Allocating: osl_structure_malloc
osl_structure_p osl_structure_malloc();

Each OpenScop data structure has a memory allocation function as shown above (except one
see below). It allocates the memory to store the corresponding data structure, it initializes the
pointer fields to NULL and the integer fields to OSL_UNDEFINED (-1) and it returns a pointer to
the allocated space.

An exception to this base description is the osl_relation_malloc () function which requires
two parameters: the number of rows and columns of the constraint matrix (see Section 3.2.1
[Relations|, page 19):

osl_relation_p osl_relation_malloc(int nb_rows, int nb_columns);

The precision of the relation elements will depend on the OSL_PRECISION environment variable
(see Section 4.1 [Precision], page 39) if it is set, or the maximum available precision if it is not
set. Another allocation function is provided to explicitly set a given precision:

osl_relation_p osl_relation_pmalloc(int precision,
int nb_rows, int nb_columns);

The precision field may take the following values:
e OSL_PRECISION_SP for 32 bits precision,
e (OSL_PRECISION_DP for 64 bits precision,
e OSL_PRECISION_MP for multiple precision,

4.2.5 Deallocating: osl_structure_free

void osl_structure_free(osl_structure_p s);

Chapter 4: OpenScop Library 41

Each OpenScop data structure has a memory deallocation function as shown above. It recur-
sively frees the memory allocated for the structure pointed by s, i.e., internal structures are also
freed.

4.2.6 Cloning: osl_structure_clone
osl_structure_p osl_structure_clone(osl_structure_p s);

Each OpenScop data structure has a clone function as shown above. It recursively copies the
content of the structure pointed by s, i.e., internal structures are also copied. It returns a pointer
to the clone of the structure pointed by s.

4.2.7 Testing: osl_structure_equal
int osl_structure_equal(osl_structure_p sl, osl_structure_p s2);

Each OpenScop data structure has a testing function as shown above. It checks whether two
pointers are referring to equivalent structures (either by pointing to the same structure or to
different structures which contain the same information). It returns 1 if the pointed structures
are equivalent, 0 otherwise. This test is content-based and is intended for debugging purpose. It
is not (and will never be) able to state, e.g., that two relations with different constraint matrices
are actually representing the same relation.

4.3 Example of OpenScop Library Utilization

Here is a basic example showing how it is possible to use the OpenScop Library, assuming that
a standard installation has been done. The following C program reads an OpenScop file from
the standard input and dumps the content of the data structures to the standard output.

/* example.c */
include <stdio.h>
include <osl/osl.h>

int main() {
osl_scop_p scop;

// Read the OpenScop file.
scop = osl_scop_read(stdin);

// Dump the content of the scop data structure.
osl_scop_dump(stdout, scop);

// Save the planet.
osl_scop_free(scop);

return O;

}
The compilation command could be:
gcc example.c -losl -o example
A calling command with the input file test.scop could be:

more test.scop | ./example

4.4 Installation

42 OpenScop Specification and Library

4.4.1 License

First of all, it would be very kind to refer the present document in any publication that results
from the use of the OpenScop specification or library, see [Basll], page 47, (a bibtex entry is
provided behind the title page of this manual, along with the copyright notice). The OpenScop
Library is provided under the 3-clause BSD license:

Copyright (C) 2011 University Paris-Sud 11 and INRIA

Redistribution and use in source and binary forms, with or without modification, are per-
mitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions
and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyrigh notice, this list of con-
ditions and the following disclaimer in the documentation and/or other materials provided
with the distribution.

3. The name of the author may not be used to endorse or promote products derived from this
software without specific prior written permission

THIS SOFTWARE IS PROVIDED BY THE AUTHOR “AS IS” AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WAR-
RANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOW-
EVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

4.4.2 Requirements

The OpenScop Library is a stand-alone library. For a basic use, it does not need any additional
tool or library. Anyway, to be able to work in conjunction with other tools that manipulate
multiple precision numbers, the GNU GMP library can be used as an option.

4.4.2.1 GMP Library (optional)

To be able to deal with insanely large coeflicient, the user will need to install the GNU Multiple
Precision Library (GMP for short) version 4.2.2 or above®. The user can compile it by typing
the following commands on the GMP root directory:

e ./configure
e make
e And as root: make install
The GMP default installation is /usr/local. This directory may not be inside the user’s
library path. To fix the problem, the user should set
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/lib
if your shell is, e.g., bash or
setenv LD_LIBRARY_PATH $LD_LIBRARY_PATH:/usr/local/lib

if your shell is, e.g., tcsh. Add the line to your .bashrc or .tcshre (or whatever convenient file)
to make this change permanent. Another solution is to ask GMP to install in the standard path
by using the prefix option of the configure script: ‘./configure —-prefix=/usr’.

2 http://wuw.swox.com/gmp

Chapter 4: OpenScop Library 43

The OpenScop Library has to be built using the GMP library by specifying the convenient
configure script options to buid the GMP version (see Section 4.4.4 [Optional Features], page 43).

4.4.3 Installation Instructions

Once downloaded and unpacked (e.g. using the ‘tar -zxvf openscop-0.9.0.tar.gz’ com-
mand), you can compile the OpenScop Library by typing the following commands on the Open-
Scop Library’s root directory:

e ./autogen.sh
e ./configure
e make

e And as root: make install

The program binaries and object files can be removed from the source code directory by
typing make clean. To also remove the files that the configure script created (so you can
compile the package for a different kind of computer) type make distclean.

4.4.4 Optional Features

The configure shell script attempts to guess correct values for various system-dependent vari-
ables and user options used during compilation. It uses those values to create the Makefile.
Various user options are provided by the OpenScop Library’s configure script. They are summa-
rized in the following list and may be printed by typing ./configure --help in the OpenScop
Library top-level directory.

e By default, the installation directory is /usr/local: make install will install the pack-
age’s files in /usr/local/bin, /usr/local/1lib and /usr/local/include. The user can
specify an installation prefix other than /usr/local by giving configure the option
--prefix=PATH.

e By default, The OpenScop Library supports 32 bits, 64 bits and GMP if it is installed in the
standard locations. Using the --with-gmp option of configure the user can specify that no
GMP (--with-gmp=no), a previously installed (--with-gmp=system, the default) GMP or
a build GMP (--with-gmp=build) GMP should be used. In case of an installed GMP, the
installation location can be specified using the —-with-isl-prefix=PATH and if different,
the installation of the library can be specified using the --with-isl-exec-prefix=PATH
options of configure. In the case of a build GMP, the user can also specify the build
location using --with-isl-builddir=PATH.

4.4.5 Uninstallation

The user can easily remove the OpenScop Library from his system by typing (as root if necessary)
from the OpenScop Library top-level directory make uninstall.

4.5 Documentation

The OpenScop Library distribution provides several sources of documentation. First, the source
code itself is as documented as much as possible. The code comments use the Doxygen technical
documentation system. The user may install Doxygen® to automatically generate a technical
documentation by typing make doc or doxygen ./autoconf/Doxyfile at the OpenScop Library
top-level directory after running the configure script (see Section 4.4.3 [Installation Instructions],
page 43). Doxygen will generate documentation sources (in HTML, LaTeX and man) in the
doc/source directory of the OpenScop Library distribution.

The Texinfo source of the present document is also provided in the doc directory. The user
can build it in either PDF format (by typing texi2pdf openscop.texi) or HTML format (by

3 http://wuw.stack.nl/"dimitri/doxygen

44 OpenScop Specification and Library

typing makeinfo --html openscop.texi, using -—no-split option to generate a single HTML
file) or info format (by typing makeinfo openscop.texi).

4.6 Development

4.6.1 Copyright Issue

The OpenScop Library is an Open Source project and you should feel free to contribute by adding
functionalities (in particular extensions), correcting bugs or improving documentation. However,
for painful administrative reasons, the copyright of the core part (everything except extensions)
should not be impacted by your work. Hence, if you are doing a significant contribution to the
main part, the OpenScop Library maintainer may ask you for an agreement about this copyright.
If you plan to do such a significant contribution, it may be wise to discuss this issue with the
maintainer first. Extensions may include developer’s own copyright.

4.6.2 Repository

The main repository of the OpenScop Library is http://repo.or.cz/w/openscop.git.
Developers may ask the OpenScop Library maintainer to open them a write access to this
repository. Only the maintainer should ever change the master branch. Developers should work
on their own branches. To avoid any problem developers should use the fork functionality of
the repository.

4.6.3 Coding Style

The OpenScop Library is written in C using an object oriented style. Each important data
structure (e.g., struct foo) has its own header file (include/osl/foo.h) where lies the def-
inition of the data structure, the two typedefs for the data structure (one for the structure,
osl_foo_t, and one for a pointer to the structure, osl_foo_p), the prototypes of the various
functions related to this data structure, all named using the prefix "osl_foo_". The source
code of the functions is provided in a separated C file (source/foo.c).

Utility functions independent from the main data structures may be placed in separate source
files (e.g., definition in include/osl/util.h and code in source/util.c). Tool-wide prepro-
cessor directives are placed in include/osl/macros.h, macros are prefixed with "OSL_".

The core code itself has to be written according to the Google C++ Coding Style: http://
google-styleguide.googlecode.com/svn/trunk/cppguide.xml (for what can apply to C),
plus the naming conventions discussed above with highest priority. The extension parts must
only respect the naming convention, but a consistent coding style is much appreciated.

4.6.4 Extension Development

It’s fairly easy to integrate a new extension to OpenScop and the OpenScop Library. Developing
a new extension is very much like adding a new "object": it requires writing a data structure for
the extension data and the 7 base functions to manage this extension. Here is how developers
should proceed to add an extension called foo (beware that the naming convention is strict):
1. Send the name foo to the maintainer to ensure it is unique and hence can be used
as an URI. The name (one single word, or words separated with underscores "_")
should be suggested by the extension developers to the OpenScop development mailing
list openscop-development@googlegroups.com). It should not correspond to an exist-
ing structure name (see include/osl/osl.h for the list). The maintainer will update
include/osl/osl.h in the development version accordingly.

2. Look at the comment extension. The comment extension (see Section 3.4.1 [Comment Exten-
sion], page 31) has been written to be used as a basic example for extension developers. Hav-
ing a look at include/osl/extensions/comment.h and source/extensions/comment.c
will be a great help to do it right.

http://repo.or.cz/w/openscop.git
http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml
http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml
mailto:openscop-development@googlegroups.com

Chapter 4: OpenScop Library 45

3.

Create the extension data structure: it is necessary that the extension data can be accessible
through only one pointer.

4. Code the 7 base functions for the extension. Any extension must provide this set of functions

(naming convention apply only if the extension is planed to be integrated to the OpenScop
Library default extensions):

e osl_foo_idump (see Section 4.2.1 [Dumping], page 40)
e osl_foo_sprint has the following prototype:
char * osl_structure_sprint(osl_structure_p s);

It corresponds to the pretty printing functions of the core data structures (see
Section 4.2.2 [Printing], page 40) with the difference that the OpenScop textual repre-
sentation is written to a string (returned by the function) instead of a file.

e osl_foo_sread has the following prototype:
osl_structure_p osl_structure_sread(char ** string);

It corresponds to the reading functions of the core data structures (see Section 4.2.3
[Reading|, page 40) with the difference that the OpenScop textual representation is
read from a string (provided as a parameter) instead of a file. The address of the string
to read is passed as a parameter and is updated to point immediately after what has
been actually read.

e osl_foo_malloc (see Section 4.2.4 [Allocating], page 40)
e osl_foo_free (see Section 4.2.5 [Deallocating], page 40)
e osl_foo_clone (see Section 4.2.6 [Cloning], page 41)
e osl_foo_equal (see Section 4.2.7 [Testing], page 41)

5. Code the other functions you need!

Now let us consider two scenarios.

First scenario, the extension is external and is not planned to be integrated to the OpenScop

Library. In this case you are all set. Simply generate an osl_interface_t for your extension
and have a look at the function osl_scop_register_extension() which is devoted to register
a new extension interface to an existing osl_scop_t.

Second scenario, the extension will integrate the set of default OpenScop Library extensions

(the best solution to share it to other potential users). In this case, a few additional things have
to be done:

1.

Create the extension header include/osl/extensions/foo.h to store the extension struc-
ture and function prototypes and the extension source file source/extensions/foo.c for
the code of the functions.

Add the documentation for the extension to the texinfo source of this document
(in doc/openscop.texi), following the example of the comment documentation (see
Section 3.4.1 [Comment Extension|, page 31).

Integrate the extension by adding the extensions/foo.c entry to the 1ibosl_la_SOURCES
in the source/Makefile.am file, the os1/foo.h entry to the nobase_pkginclude_ HEADERS
and add the corresponding #include <osl/extensions/foo.h> in the include/scop.h.in
file.

4. Add the new extension in the osl_interface_get_default_registry() function.

You are done! Prepare a single commit or patch corresponding to the integration of the
new extension and ask the maintainer to merge it to the master branch.

47

5 References

e [Bas03a] C. Bastoul, P. Feautrier. Improving data locality by chunking. CC’12 International
Conference on Compiler Construction, LNCS 2622, pages 320-335, Warsaw, April 2003.

e [Basll]| C. Bastoul. OpenScop: A Specification and a Library for Data Exchange in Poly-
hedral Compilation Tools. Technical Report, Paris-Sud University, France, June 2011.

e [Fea92] P. Feautrier. Some efficient solutions to the affine scheduling problem, part II: multi-
dimensional time. International Journal of Parallel Programming, 21(6):389-420, December
1992.

e [Gri04] M. Griebl. Automatic parallelization of loop programs for distributed memory
architectures. Habilitation Thesis. Facultit fiir Mathematik und Informatik, Universitat
Passau, 2004. http://www.infosun.fmi.uni-passau.de/cl/loopo/

e [Wil93] Doran K. Wilde. A library for doing polyhedral operations. Technical Report 785,
IRISA, Rennes, France, 1993.

	Introduction
	Polyhedral Representation of Programs
	Motivation: Program Transformations
	Thinking in Polyhedra
	Iteration Domain
	Scattering Function
	Access Function

	What's Next?

	OpenScop Specification
	Preliminary Example
	OpenScop File Format Specification
	Relations
	Iteration Domain Relation
	Context Domain Relation
	Scattering Relation
	Access Relation

	Generics
	Strings Generic
	Body Generic

	OpenScop Data Structure Specification
	osl_int_t
	osl_relation_t
	osl_relation_list_t
	osl_interface_t
	osl_generic_t
	osl_strings_t
	osl_body_t
	osl_statement_t
	osl_scop_t

	Extensions
	Comment Extension
	Scatnames Extension
	Arrays Extension
	Coordinates Extension
	Clay Extension
	Extbody Extension
	Loop Extension
	Pluto unroll Extension
	Irregular Extension

	History

	OpenScop Library
	Precision
	Base Functions
	Dumping: osl_structure_dump and idump
	Printing: osl_structure_print
	Reading: osl_structure_read
	Allocating: osl_structure_malloc
	Deallocating: osl_structure_free
	Cloning: osl_structure_clone
	Testing: osl_structure_equal

	Example of OpenScop Library Utilization
	Installation
	License
	Requirements
	GMP Library (optional)

	Installation Instructions
	Optional Features
	Uninstallation

	Documentation
	Development
	Copyright Issue
	Repository
	Coding Style
	Extension Development

	References

